Progression in Mental Mathematics

Primary Maths

Contents

Rationale and guidance	Pages 2-10
Pre-Operational Learning (EYFS or Early Y1)	Pages 11-13
Year 1	Pages 14-22
Year 2	Pages 23-30
Key Stage 1 examples and key facts	Pages 31-32
Year 3	Pages 33-44
Year 4	Pages 45-53
Lower Key Stage 2 examples and key facts	Pages 54-55
Years 5 and 6	Pages 56-69
Upper Key Stage 2 examples	Pages 70-71

HfL Progression in Mental Mathematics Guidance

Rationale

This document was written in response to the heightened demands of the National Curriculum (2014). It aims to support teachers and leaders with a map of progression in mental fluency that is underpinned by research. The programme of study includes references to mental calculation but lacks the detail needed to provide a coherent pathway. It is up to schools to decide upon what this should look like. This guidance document provides the necessary detail.

With the expectation that pupils will move at 'broadly the same pace' through the curriculum, schools have been seeking a pathway from EYFS to Year 6 that will support the development of all pupils' mental skills, including those who might previously have struggled to develop the core knowledge and understanding necessary. This document reflects the findings of our research projects and 'tried and tested' approaches with schools, focusing on practice that is most effective at increasing mental fluency for more of our pupils.

Approaches

Working in collaboration with teachers, Herts for Learning advisers have found that the following approaches have had significant impact upon pupils' ability to develop number sense and multi-strategy approaches to mental calculation.

- A risk-free environment where learning is valued over performance

Where the environment praises speed and 'first to get the answer right', it emphasises a competitive view of mathematics. Unfortunately, this has the effect of 'hiding' how fluency is developing in other pupils and implies that mental calculation is a performance. This can adversely affect pupils' desire to engage. Instead, we promote a range of approaches that are more effective in engaging pupils to discuss and reason about their strategies. A risk-free classroom has an ethos that is underpinned by the following attributes:

1. Everyone has something to contribute and we all value those contributions
2. An appreciation that we each see things differently - there may be one answer, but there are a myriad of available journeys
3. This is not about guessing what is in the teacher's head
4. There is an expectation that we have to try to communicate our ideas so that everyone else can understand them and that we are expected to try and understand the thinking of others
5. There is an expectation that we have to listen to what others say and then try to build on it - agreeing and disagreeing by offering proof.

All of the following approaches can be utilised in shared, whole-class learning discussions. It is not an exhaustive list but provides a flavour of available possibilities.

1. Give the calculation and the answer - shared class discussion: 'How could you do this?'
2. 'One finger, one way' - show me your thumb when you have found one way to find the answer, keep thinking and show me another finger when you have found another way...
3. 'Show me, show me' - show me your thinking in as many ways as possible.
4. 'Can you use the \qquad (named) strategy to solve this?'
5. 'Cluster of facts' - pupils identify facts that would be helpful to solve a calculation and / or explain why given facts might be useful to solve the problem.
6. 'Shortcuts' - "I could take a shortcut in this strategy if I ..."
7. 'Seek and destroy' - identify correct and incorrect answers from a range and explain why.

- CPA (concrete-pictorial-abstract)

To understand the numbers they are working securely with and develop number concepts alongside the procedures, the CPA approach allows pupils to demonstrate and explore learning across a range of representations.

For example, when very young pupils learn about ' $3+2$ ' they need to learn that the symbols stand for the operation of addition i.e. adding 2 to 3. They also need to understand the concept of a sum. In the CPA approach, pupils would explore the calculation using concrete apparatus to identify the ' 2 ', the ' 3 ' and the sum 5 as well as pictorial representations of the same calculation and the abstract notation (including language) to better understand both the procedure of adding 2 to 3 and the idea of sum.

$3+2=5$

" 3 cubes and 2 cubes equal 5 cubes"
"five is two more than three"

"three girls and two boys is five children altogether"

" 3 cubes and 2 more cubes is 5 cubes"

" 3 girls and 2 more girls makes 5 girls"
"What other facts could we use to make 5 ?"

Without exploration through a range of representations, we cannot expect pupils to develop a full understanding of the underpinning concepts, facts and skills that are integral to developing good mental fluency. Schools should decide on core representations. They also need to ensure that variations of these are also included so that once pupils are able to they can be supported to assimilate learning to new representations.

- Practice

Practice is a key approach to developing the automaticity needed to reduce cognitive load. Pupils who have facts and skills at their fingertips are more likely to attend to the particulars of new learning than those that do not. These pupils have to work harder and are over-burdened. At Herts for Learning, we think of practice not as meaningless repetition of facts in which pupils chant without thought or as a series of isolated facts learnt at home then tested in school, but as a chance to rehearse them within exercises that develop better thinking. Practice is an opportunity to keep facts and skills 'simmering' and a further chance to vary the ways that they are presented. Schools should be mindful of the quality of practice rather than the quantity. Similarly, they are advised to focus upon the facts and skills that will make the greatest difference to mental fluency at each phase.

- Facts to be practised

At the end of each of phase, further guidance identifies which facts will support fluency. For example:

Year Three Recall

- Sums and differences between pairs of numbers which are multiples of 10 and 100
- Doubles and halves of multiples of 10 or 100
- Complements to 100
- Complements to 60 (time)
- Complements of tenths that make 1
- Complements of fractions with the same denominator that make 1 e.g. $3 / 7+4 / 7=1$
- $\times 3, \times 4, \times 8$ multiplication facts including division facts
- Number of seconds in a minute
- Number of days in a month and in a year including a leap year

- Skills to be practised

HfL advisers have identified a selection of key skills that, when practised, lead to increased mental fluency. Alongside increasing fact acquisition, they allow pupils to develop greater access to choices of strategy.
These are denoted in the progression document by a blue lozenge

Subitising	the ability to see number as pattern, such as dice patterns. This supports pupils to see numbers within numbers and better regrouping (partitioning).
Regrouping (partitioning)	the ability to break numbers up and recombine them flexibly
Counting on and counting back	in a variety of interval steps
Reordering	knowing when and how to reorder to make calculations easier
Finding complements	links to reordering, identifying useful complements pairs or trios of 1, 10, 60 etc.
Applying the inverse	use of fact family knowledge to 'undo'
Rounding	to a range of benchmark numbers
Estimation	both linear estimation on number lines and scales, and of quantities and calculations to support an increasing sense of what is reasonable
Compensation	to use rounding to add or subtract too much or too little and adjust accordingly
Rebalancing	to adjust the parts of addition and subtraction facts to make a calculation easier
$x \div$ by powers of 10	
Doubling and halving	
Rearranging	to adjust the groups in multiplication and division to make a calculation easier

- Core concepts

Secure mental fluency is dependent upon a range of underpinning concepts that develop over the primary phase. These are identified in the progression document by a purple box.
We recommend that schools monitor how these concepts are evident through the school and how they build progressively through each phase.

Counting concepts

- one-one principle - each object counted once and given one counting tag
- stable-order principle - we use the words in the same order
- cardinal principle - the last number counted is the number of the set
- abstraction principle - counting can apply to objects which are not tangible e.g. number of claps
- order-irrelevance principle - it doesn't matter which order we count objects in

Conservation

Unless we increase or decrease the set, it will stay the same. The quantity is conserved. For example, we can muddle up 6 counters after counting but there will still be 6 counters.
This is crucial for the concepts of sum and commutativity.

Sum

The total of quantities combined. The concept of equal sum is linked to conservation. We can rebalance the quantities combined and the sum will stay equal.
For example, $1+3=2+2$

Equals

Where two expressions have the

Using the progression document

The progression is structured into phases. In Years 1 to 4, this is organised into individual year groups. At the beginning, there is a section entitled 'Pre-operational Learning'. This helps ensure that the foundations are secure by the end of EYFS and in the first few weeks in Year 1 before mental fluency within numbers to 10 begins. This also supports the early identification of gaps and barriers.

In each year group / phase, the progression is organised into the National Curriculum Programs of Study domains: number and place value; addition and subtraction; multiplication and division including fractions. Within these domains, key concepts (ideas), skills (which can be utilised) and strategies (methods) are exemplified within the relevant number ranges.

At the end of each phase, a selection of possible examples that align with a given strategy or skill are included. For KS1 and UKS2, there are examples taken directly from the relevant end of key stage assessments (2016) and sample papers. When designing opportunities to practise or for strategy discussions, these will support teachers to explore and / or guide pupils towards a particular strategy.

Upper KS2 examples

Implementing the progression

Before implementing the progression, schools should consider some or all of the following self-evaluation questions. These will support leaders to identify the most important focuses and actions

Is practice effective in your school? How do you know?

- As a school, are the principles of effective practice design understood?
- Have you identified the key skills and facts in which automaticity for the majority of pupils is the aim?
- Where are the gaps? What are the barriers to pupils developing secure mental fluency?
- To develop effective mental strategies, where does teacher subject knowledge and understanding of approaches need to be strengthened?
- Is there a common language when discussing mental fluency?
- Which strategies did pupils use in the end of key stage assessments? Were these strategies informed by mental fluency?
- What does progression look like now for each of the number domains in mental fluency?

Implementing any new curriculum focus and related approaches should focus upon the impact on pupil outcomes. This includes both quantitative and qualitative measures. Any development of teaching and learning should have this priority at its centre. Actions need to be specific, matched to intended goals and clear to all stakeholders. Implementation should include opportunities for evidence-based reflection points. The emphasis, here, is evaluative and lessons learned should be shared across the community before the next steps are considered.

Pre-operational Learning

Core concept: COUNTING

Core skill: SUBITISING

Numbers 6 and 7 where 5 is the benchmark i.e. 6 is 1 more than 5 using fives frames and additional counters.

Ensure transference to fingers.

Matching patterns where the number of dots is equal. Progress to patterns where the number of dots are equal but the pattern is different.

Finding dot patterns that are one more or one less than the pattern displayed.

Identifying numbers within the whole set of dots (i.e. conceptual subitisation).

Core concept: UNITISING

Core concept: UNITISING

Patterning drawing out the concept of a repeated unit.

Identifying the part of the pattern that repeats (i.e. identifying the unit being repeated).

Move the pupils through the following steps:

- replicate repeated patterns predict the next part of a repeating pattern
- recognise missing elements of a repeating pattern.

Think 5

Where the whole is 6 or 7 and one of the parts is 5 (to secure benchmark from 5).

Year 1

Progression

Matching patterns where number of dots is equal.
Matching patterns where the number of dots is equal but the pattern is arranged differently.

Finding dot patterns that are one more or one less than the pattern displayed.
Identifying numbers within the whole set of dots (see example above).

Core concept: COMPARISON

Core skill: COUNTING ON and BACK

Pupils count on to find the total and difference.

Core concept: CONSERVATION

Core skill: REGROUPING

Part part whole model drawing out an understanding of commutativity.

Pupils to extract fact families from the models and explore commutativity.

Multiplication and Division

Core concept: UNITISING

Equal grouping drawing out understanding of repeated addition.

and

$$
2+2+2=6
$$

There are three groups of two teddies. Three groups of two equals six.

Year 1
Numbers to 10
Number and Place Value
Number and Place Value

Number and Place Value
Core concept: UNITISING and PLACE
VALUE
Regrouping numbers into ten and some more
drawing out understanding that ten ones are equal

Core skill: COUNTING ON and BACK

Skip counting

Counting to include opportunities to count in 5 s and 10 s in several ways including with coins, tallies and pictograms.

Year 1
Numbers to 20

Year 2

Number and Place Value

Number and Place Value
Number and Place Value
Number and Place Value
Core concept: COUNTING and PLACE
VALUE

Key Stage 1 Examples

Key facts

Year One Recall

- Number bonds within 10 including $a+b+c=d$, the effect of adding zero and missing number calculations
- Reordering to find tens and some more e.g. $4+5+6=$
- Doubles within 10 including subtraction e.g. 6-3 = 3 and missing numbers e.g. $6-\square=3$
- Structured subitisation on tens frame to 20

Year Two Recall

- Addition and subtraction facts to 20
- Multiplication and division facts 2,5 and $10 \times$ tables
- Multiplication facts for $3 \times$ tables
- Number of minutes in an hour; number of hours in a day
- Coin recognition up to £2
- Doubles to 20

Year 3

Addition and Subtraction

Multiplication and Division

I can see 2 hundreds, 3 tens and 6 ones $200+30+6$.
236 is also six more than two hundred and thirty.

Using part part whole models, regroup 3-digit integers flexibly and in multiple ways.

II

236 can be regrouped into 220 and 16. There are 23 tens and 6 ones in 236 .

Core concept: CONSERVATION

Core skill: REGROUPING

Think regroup for addition

Using part whole models draw out the skill of regrouping numbers to allow bridging through multiples of ten and a hundred. Ask pupils to reason why they may wish to reorder the numbers. Pupils should be encouraged to explore multiple ways of regrouping both addends (refer to number and place value experiences). Only a limited example is shown here e.g. $76+38$

This can be applied to regrouping addends in 3digit +1 -digit calculations e.g. $247+8$.

$$
247+8=250+5
$$

Core concept: UNITISING and SCALING

Core skill: DOUBLING and HALVING

To include 'double and double' strategy for $x 8$ and halving strategy for finding $\times 5$.

I can find 5 lots by finding 10 lots and halving the product.
Number and Place Value
Repeat this understanding to explore tenths
through the same concrete and pictorial
representations securing the multiplicative
relationship.

Number and Place Value	Addition and Subtraction	Multiplication and Division	
	Regrouping the subtrahend I regrouped the 13 into 5 and 8. Then I took the 5 from the 25 and that left 20. Now I can take away the remaining 8 to make 12 .	Regrouping the multiplicand (number in the group) e.g. 8×6.	
		$8 \times 6=5 \times 8+1 \times 8$ I can use my 5 fact to solve 8×6. I know 8×5 is 40 and 8×1 is 8 . So 8×6 is 48 .	
		Applying to think 10.	le, 12×5.
		$12 \times 5=10 \times 5+2 \times 5$	Year 3

Number and Place Value

Number and Place Value
Core concept: MAGNITUDE and
COMPARISON
Number and Place Value
Leading to rounding to the nearest 10, the nearest
100 and, later, the nearest 1 .
Number and Place Value
Number and Place Value

Year 4

Number and Place Value
Core concept: UNITISING
Core skill: REGROUPING

Grouping thousands, hundreds, tens and ones drawing out the concept that ten ones are equal to a unit of 'one ten' and ten tens are equal to a unit of one hundred etc.

I can see one thousand, two hundreds, three tens and six ones. $1000+200+30+6$ It is thirty-six more than one thousand and two hundred.

Core concept: UNITISING

Core skill: REGROUPING

Think Regroup for addition

Part whole drawing out the concept of regrouping numbers to allow bridging through hundreds, tens and ones. Ask pupils to reason why they may wish to reorder the numbers.

Pupils should continue Year 3 learning and be encouraged to explore multiple ways of regrouping both addends (refer to number and place value experiences). Only a limited example is shown here.

This can be adapted to 'Think 100' $376+158$

Multiplication and Division

Core concept: CONSERVATION and SCALING

Core skill: REGROUPING

Think 5 x fact

Application of the distributive law
Regrouping the multiplier (number of groups). For example, 8×6.

6	6	6	6	6	6	6	6

$\sqrt{5}$
I can use my 5 fact to solve 8×6. I know 5×6 is 30.3×6 is 18 . So 8×6 is 48 .

$$
8 \times 6=5 \times 6+3 \times 6
$$

Year 4

Use resources to prove statements such as:
'There are 25 hundreds in the number 2500'.

Continue this to explore tenths and hundredths through the same concrete and pictorial representations to secure understanding of the multiplicative relationship.

$.000000000-0000000001000000000000-$

I can see three tenths and four hundredths.

I can see that in the number 25.36, there are 2 tens, 5 ones, 3 tenths and 6 hundredths.

We can also say there are 253 tenths and 6 hundredths in my number.

Then adapted to decimal and fractional part whole as well as measures such as time and money. For example, $1 \frac{2}{7}-\frac{5}{7}=$

π
I can regroup the subtrahend $\frac{5}{7}$ into $\frac{2}{7}$ and $\frac{3}{7}$ Then I can take away the $\frac{2}{7}$ leaving $\frac{7}{7}$ or 1 and finally take away $\frac{3}{7}$.

Core skill: APPLYING THE INVERSE

Think multiplication for division

For example, $24 \div 8$.

By grouping

I can see that 3 groups of 8 equal 24. $3 \times 8=24,24 \div 8=3$

By sharing

Leading to fractional understanding - see Year 2 progression and extend into further fractions.

Year 4
Numbers to 10000

Counting on and back in multiples as well as making counting links e.g. counting in 6 s , 60 s (relate to time), 600 s and 0.6 s .

Counting in $25 \mathrm{~s}, 50 \mathrm{~s}, 0.1 \mathrm{~s}$ and 0.01 s paying attention to bridging (regrouping) points.

Core concept: COMMUTATIVTY and UNITISING

Core skill: REORDERING and FINDING COMPLEMENTS

Adding three or more numbers. Draw out the reasons why pupils may wish to reorder the numbers and focus on a range of strategies used.

$$
\begin{aligned}
& 800+240+360= \\
& 2.5+25+5+2.5= \\
& 310+700+300=
\end{aligned}
$$

Core concept: COMPARISON and

 DIFFERENCE
Core skill: COUNTING ON and BACK

916-897

Comparison

Drawing out use of benchmark numbers.

916	
897	

Core concept: UNITISING and SCALING

Core skill: COUNTING ON and BACK

32

Where on the counting stick will we place 32? Explain your thinking.

If I know $x 1, x 2, x 5, x 10$, what else can I work out?

Number and Place Value
Number and Place Value

Lower KS2 examples

Key facts

Year Three Recall

- Sums and differences between pairs of numbers which are multiples of 10 and 100
- Doubles and halves of multiples of 10 or 100
- Complements to 100
- Complements to 60 (time)
- Complements of tenths that make 1
- Complements of fractions with the same denominator that make 1 e.g. $3 / 7+4 / 7=1$
- $\quad x 3, \times 4, x 8$ facts including division facts
- Number of seconds in a minute
- Number of days in a month and in a year including a leap year

Year Four Recall

- Review addition and subtraction facts within 20, ensure application to 10,100 and $1000(6+3,60+30,600+300,6000+3000)$
- Doubles and halves of multiples of 10,100 or $1000(6+6,60+60$, $600+600,6000+6000)$
- All multiplication and division facts to 12×12
- Multiplication and division by zero and one facts
- Division and multiplication by 10 and 100
- Conversion of kilometres to metres, hours to minutes, years to months, weeks to days
- Complements of hundredths that make 1

Years 5 and 6

Number and Place Value	Addition and Subtraction	Multiplication and Division
Core concept: MAGNITUDE and COMPARISON Introduce pupils to a range of calculations in which a secure understanding of place value is required to support the solution. For example, $2.005+3.24$. Estimation drawing out the concept of 'distance' of numbers to target numbers / benchmarks in preparation for rounding. 20,000 and I can see that 20,034 is 4 from 20,030 and 6 from 20,040. 20,034 is nearer to 20,030 than to 20,040 . Comparison to benchmark numbers Using number knowledge to look for 'nearly numbers' in calculations. $7834+79,996$ 79,996 is 4 less than 80,000 and that's an easier number to add.	Core concept: UNITISING Core skill: REGROUPING Think Regroup for addition Part whole drawing out the skill of regrouping numbers to allow bridging through hundreds, tens and ones. Ask pupils to reason why they may wish to reorder the numbers. Pupils should continue LKS2 learning and be encouraged to explore multiple ways of regrouping both addends (refer to number and place value experiences). Only a limited example is shown here.	Core concept: UNITISING Core skill: REGROUPING Think Regroup for multiplication and division drawing out the distributive law for both multiplication and division and encouraging pupils to regroup and multiply in a variety of ways, evaluating the most useful. $24 \times 3=$

Number and Place Value	Addition and Subtraction	Multiplication and Division
Rounding Round 136,521 to the nearest 100, 1000 and 10,000. Rounding as estimation for multiplication and division. $688 \times 79=$ 688 rounds to 700 and 79 rounds to 80. The calculation 688×79 is close to $700 \times$ 80 , which is 56,000 . $789 \div 79=$ 789 rounds to 800 and 79 rounds to 80. The calculation $789 \div 80$ is close to $800 \div$ 80 , which equals 10.	Then adapted to decimal and fractional part whole as well as measures such as time and money. For example, ${ }^{\frac{4}{7}}+\frac{5}{7}=$ Here both addends can be regrouped using complements to 1 and some more. Extend into UKS2 by converting fractions into equivalents with common denominators. Beginning with conversions where no regrouping is required. For example: $\begin{aligned} & \frac{2}{10}+\frac{2}{5}=\square \\ & \frac{2}{10}+\frac{4}{10}=\square \square \square \square \square \square \end{aligned}$	$24 \times 3=$

Number magnitude drawing out the concepts of relative size, order and comparison of number.

Number estimation using scales should continue to be applied to scales of measurement including those with negative and dial scales.

Progress to examples where regrouping would be a valid strategy.

$$
\begin{aligned}
& \frac{3}{10}+\frac{4}{5}= \\
& \frac{3}{10}+\frac{8}{10}=
\end{aligned}
$$

Rehearse regrouping either addend to make 1s and some more.

$72 \div 3=$
$000000006 \div 3$
$12 \div 3$
-000000000000000000

$15 \times 3.4=$

I know that $10 \times 3.4=34$
Then I can halve 34 to find 5 groups of

$$
3.4 \text { which is } 17 \text {. }
$$

After that, I have to recombine the products. This equals 51.

Think regroup for subtraction

Part whole drawing out the skill of regrouping either the minuend or the subtrahend.
Pupils should be encouraged to explore multiple ways of regrouping both the minuend and subtrahend (refer to number and place value experiences).

For example, 540-70
Regrouping the minuend

Regrouping the subtrahend

Then adapted to decimal and fractional part whole as well as measures such as time and money.
For example, $1 \frac{2}{7}-\frac{5}{7}=$

> I can regroup the subtrahend $\frac{5}{7}$ into $\frac{2}{7}$ and $\frac{3}{7}$. Then I can take away the $\frac{2}{7}$ leaving $\frac{7}{7}$ or 1 and finally take away $\frac{3}{7}$.

Extend into UKS2 by converting fractions into equivalents with common denominators.
Beginning with conversions where no regrouping is required. For example, $\frac{2}{10}-\frac{1}{20}=$
Progress to examples where regrouping would be a valid strategy. For example, $1 \frac{3}{10}-\frac{4}{5}=$
Pupils will have to know that $\frac{4}{5}=\frac{8}{10}$ before they can solve the calculation.

Then they could regroup either the subtrahend or the minuend.

For example, $1 \frac{3}{10}-\frac{8}{10}=$

Application to KS2 example (Q11 paper 1 2016):
$=284 \times 2$

Core concept: CONSERVATION and
 COMPARISON

Core skill: REBALANCING

Equal sum drawing out the concept of equality when rebalancing the numbers in an addition calculation.

Pupils use bead strings to demonstrate that:

$$
7+5=10+2
$$

Apply concept to range of numbers and missing number problems.
For example, 24 +$=30+3$.

See Year 3 and 4 examples

These should include rehearsal using calculations such as:

$39+52$	$345+198$
$0.39+6.54$	$5.1+2.7=\square+4.8$

Number and Place Value	Addition and Subtraction	Multiplication and Division
	Ensure pupils are secure with the concept of equal sum before considering questions such as: $7834 \text { + 79,996 }$ 79,996 is 4 away from 80,000 . I can rebalance the sum by taking 4 from 7834 and giving it to the 79,996. Now I have $80,000+7,830=87,830$. Compensation with the same calculation supports pupil's multi-strategy approach. Pupils can continue to evaluate strategies. $7834 \text { + 79,996 }$ Adding 79,996 is like adding 80,000 and subtracting 4. $\text { I can do } 80,000+7834-4=87,830$ Improve multi-strategy approaches by asking for two different ways of solving calculations such as: $\square=5,756+8,643 \quad 16.98+23.214=$	For example, If I shared 12 cookies among 4 children each child would get 3 cookies. $12 \div 4=3$ I can also see that 6 cookies shared between 2 people would give the same group size. The size of the group hasn't changed. So $12 \div 4$ can be changed into $6 \div 2$. As I am trying to find out the group size, I can also see that $3 \div 1$ gives me the group size. So $12 \div 4$ can be thought of as $6 \div 3$ and $3 \div 1$. I can see all of these in the array. Applying this conceptual understanding to larger numbers encourages playfulness with division.

Number and Place Value	Addition and Subtraction	Multiplication and Division
	Use a range of examples. \square $=4-1.15$ It is easier if I subtract 0.15 from each number. The difference will stay the same. Now my calculation is 3.85-1 = Compare this to compensation $132,457-11,999=$ Subtracting 11,999 is like subtracting 12,000 and then adding 1. Now my calculation is $132,457-12,000+1=$	Progress to dividing fractions in which the fraction needs converting. $\frac{3}{4} \div 2$ $3 / 4 \div 2$ can be understood as: "If I share $3 / 4$ equally between 2 groups, how many in each group?"

Multiplication of fractions by fractions

Equal groups

I know that 3×4 could mean 3 groups of 4 . So $1 / 2 \times 1 / 4$ means half a group of $1 / 4$.
$1 / 2 \times 1 / 4=$

When we find half of any number, we divide it by two.
The blue part has a value of $\frac{1}{4}$.
When I halve it, it makes $\frac{1}{8}$.

Pupils should focus upon the denominators and reason why, when multiplied, we find the product of the denominators.
Once understood pupils can employ the rule.

Halve and double

The 'halve and double' rule can be applied to

 fractions.Pupils have already secured conceptual understanding of this rule, for example:

$$
5 \times 4=10 \times 2=20 \times 1
$$

Apply this understanding to fractions, for example:

$$
1 / 2 \times 1 / 4=
$$

If we double the first term and halve the second, we can transform the calculation to:

$$
1 \times \frac{1}{8}=\frac{1}{8}
$$

For further detail regarding the multiplication and division of fractions refer to the 'HfL Bar Modelling Progression' document.

Upper KS2 examples

Herts for Learning

Robertson House, Six Hills Way, Stevenage, SG1 2FQ

Office: 0143884462
Website: www.hertsforlearning.co.uk
Twitter: @HertsLearning
Facebook: facebook.com/HertsforLearning
© Herts for Learning Ltd 2017

